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Abstract

A Vlasov equilibrium model is developed which can describe

a broad class of beam—plasma systems in an applied field, B~.

The model treats arbitrary density profiles and azimuthal

self—magnetic fields as well as a thermal spread in the momentum

of the beam. It is assumed that the electron gyroradius is

small but not negligible compared with the beam radius, and

that the beam is completely charge neutralized but only

fractionally current neutralized. The electron orbit equations

are solved and are used to simplify the form of the distribution

• function and the calculation of its velocity moments. The

rotation frequency of the beam and the diamagnetic or pare—

magnetic properties of such warm beam—plasma systems are also

studied.
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I. INTRODUCTION

In recent years there has been much interest in the.equilibrium

and stability properties of relativistic electron beams . One particular

reason for this interest is the use of relativistic electron beams as

• a plasma heating device.~~
8 An understanding of the physical mechanisms

involved in this heating process requires a thorough knowledge of the

equilibrium and stability properties of the beam—plasma system. In

general the stability analyses of such beam—plasma systems that have

app
~~

red in the literature have assumed that the background plasma

provides both complete charge and current neutralization .6
~~

3

For the stability analysis it is also generally assumed that the beam is

cold as well as spatially uniform and infinite in radial extent.

Some work has been done where only partial charge and current neutraliza-

tion have been assumed’4 and where finite—radius beams have been studied15 19

but a more complete analysis is needed. The presence of self magnetic

fields and radial boundaries can have important effects on the mode

structure of beam-plasma systems; for example, their presence can

greatly enhance the coupling between the transverse and longitudinal

waves that are found by treating a uniform, current neutralized beam.

The purpose of this article is to present a Vlasov equilibrium model

for a warm relativistic electron beam propagating through a background

plasma iimnersed in a uniform applied magnetic field, Bz~ 
The model

allows for self—magnetic ft~lds,
’ for arbitrary radial beam density

profiles and for a thermal spread in momentum, however, it will be

assumed that the beam is charge neutralized by the background ions .

Since B0#0 and the beam is warm, both paramagnetic and diamagnetic beam

equilibria are possible, where the magnitude of B0 can be adju sted by
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varying the fractional current neutralization provided by the counter—

streaming of the background electrons. In a subsequent paper this

equilibrium model will be used in analyzing the stability of such a

beam—plasma system. It should be pointed out that this model can easily

be generalized to describe the problem of a Tokamak plasma with a supra—

thermal electron population. Here again both the toroidal and the

poloidal magnetic fields can be described as well as the finite radial

density profile.

The applied field , B , is assumed large enough so that the gyro—

radius of both the beam electrons and the background electrons is small

compared to the radius of the beam. With this assumption the electron

orbits are easily calculated by an expansion method using the smallness

of the gyroradius and the method of harmonic balance. 2° These orbits

are useful in writing down the distribution functions for the two

4 electron components in a convenient form that will facilitate the

calculation of the velocity moments. The ions will be described by

a stationary cold fluid model which will be shown to be appropriate
m~w2

~r2
for w>>w and T <ci i~~ 2

In Section II a discussion of the assumptions that are appropriate

in describing this beam—plasma system will be presented. Following this

discussion, the procedure for calculating the electron orbits will be

outlined in Section III. The beam electron distribution function , 
~b’

and its velocity moments are developed in Sections IV and V , whereas

Sections VI and VII provide a similar development for the background

electrons. The equations that describe the self—consistent magnetic

fields are presented in Section VIII and the numerical solution of these

equations are included in Section IX , which gives some examples of

typical beam-plasma equilibria described by this model. Finally,

~~~~~~~~~~~ —- ——
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* Here II refers to the streaming (4 independent) component of the motion,

* .L refers to the gyromotion, and has been identif ied as p
~1 i’m y.

Eq. (15) was solved with all the variables written as functions of R;

* 

then the intermediate result for was expanded about R=r in order to

arrive at the solutions exhibited in Eqs. (33), (34) and (35), where all

the var iables ar~ again written as function of r. Also note that

~ is not simply 
—

~~~~~ but contains a drift correction of 0(e).

From Eqs. (34) and (35) It is clear that the streaming component

of the motion involves both streaming along the field lines as well

as a drift across the field lines. Defining a pitch angle, r~, for

the streaming motion one has

0 2 2 0 2
p~ wce 1 ~~.t 

p~1 (wee)
p 11 ‘~~ z + 2 z + z 3 (37)

m rw  m r(w )
ce e ce e ce

Ph CoST) = 
~~ 11 (1 + ~~(~~~

:)

2

) 
(38)

so that

L - - - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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0

and 

(1) 
= 

~ 
2

(2) 
= 

1 

~ + ~1(_ ~)] (40)
m p  rw we II cc ce

Thus the streaming is predominantly along the field lines for the

ease considered here, however the streaming does depart slightly from

this course due to the Curvature drift as indicated by ~(2)
•

The fact that the 0(e) correction to the guiding center position ,

is nonzero for this ordering can be explained by consideration

of the conservation of canonical angular momentum , P8
. If each beam elec-

tron is injected axially into the plasma at some r=R with zero mechanical

* angular momentum from a source which Is immersed in the axial applied

magnetic field, then the canonical angular momentum of the electron is

simply _w
~e
R2f2. The contribution of the axial self—magnetic field to P0

is not considered here since it is two orders of magnitude smaller than

the contribution of the applied field. Now as the electron begins

streaming along the helical field lines while gyrating about them, it

gains mechanical angular momentum at the expense of the angular momentum

associated with the applied field. In terms of anharmonic oscillation

potential, Eq. (22), the potential minimum, ~~~, and the phase—averaged

particle position, R, differ in first order, by an amount which depends

on the injection v 1 , since the potential is a velocity—dependent one.

The rotation associated ~~~~ the streaming along the field lines accounts

for the largest part of the mechanical angular momentum and is of 0(e).

This process is equivalent to saying that the guiding center of the

-
* electron is injected at R=R+v w 0 

/ (w
Z )

2 
and not at R. The electronII cc ce

is injected into the potential well at R, displaced from the minimum

L *~~~~~~~—- *~~~~~~~-- ~~~~~~~~ - —~~~~~~~~~~~~~~~~
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; thus the electron oscillates about R with a frequency, Q. Since V(p)

is not a simple harmonic pot e~itia1 there are also small corrections to

• the usual electron gyrofrequency as shown in Eq. (36). In what follows R

will be used to denote the electron guiding center posiLion.

It is also useful to write down the single particle orbits *

in the equilibrium fields. These orbits are necessary in calculating

the perturbed distribution function when using the method of charac-

teristics in a stability analysis. If ~‘=r~ at T=t ’— t O , the beam

* electron orbits are

P.!. 2
= r + (sinc~—sin40

) + O ( e  ) (41)
ece

0
/p 11 w \ p, 2• 0’ = 0 + (  C: J r  — 

~ 
(cos~—cos40

) + O(e ~
\m irw / m r we cc e cc (42)
~ fl 24 z ’ = z + — r + 0(e ) (43)

where terms of 0(e
3) have been dropped and where

In order to describe the background electrons the following

ordering is used: —~— ‘\‘0(e
2) ,  _±~~0(e

2
) •_~•,~0(~

2
) and —~~.0(€~)

(along with the assumptions found in Eqs. (1) and (2)). In this

case the velocity of the electrons is found to be

V + 0(e 4 ) (44)

* 

v0 
= 

t
~~e~~ 

+ v 1sin4~ + 0(e 4) (45)

v = v 11 + 0(c ) (46)

L ___________
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where ~~w
2
t+40. This shows that the background electrons, which are

responsible for the partial current neutralization, essentially stream

along the field lines and gyrate about them. Again it is useful to

write down the orbits, which for the background electrons are simply

given by

y e 3r’ = r + — - —  (sin4—sinq
0
)+0(e ) (47)

- l cc

V I 3
= — 

rw
Z (cosq—cosq

0
) + 0(c ) (48)

ce

-
I 

Z = Z + V
1
•t + 0(c ) (49)

where ~~~~~~~ when t0.

Although Eqs. (27) through (32) have only been solved here for

two particular orderings, other solutions are possible if the variables

are ordered differently. For example if the order of —

~~~~~ 

is reduced to

0(c ) instead of 0(e), it is easy to find the new solutions directly

from the solutions already discussed by merely changing the ordering

where appropriate and dropping any terms of 0(~~) or smaller. For

the particular example mentioned here, the diamagnetic current will

now be of the same order of magnitude as the azimuthal current due

to the electron streaming along the helical field lines, i.e.,

0 2
~~ 

m ’~~~ 

~~~‘~“ “u 0(e 2) 

w
0

This implies that the beam ‘can be diamagnetic whereas if —
~~~~~ ‘. 0(c)

the beam is paramagnetic. The diamagnetic current is of cS~rse a

fluid propery and does not appear in the single particle orbits.



-

~~~~~

14 *

IV. THE BEAN ELECTRON DISTRIBUTION FUNCTION

* 
Consider the distribution function

1 b b 
_g
~ /T~

= N
b
(R)exp (— j— [H_W RPO

_V
Z
P
Z]} Nb

e (51)

Here can be associated with the fluid rotation of the electron

beam and can be associated with the axial streaming of the beam.

Since the guiding center position of the electron is a constant of

the motion, N can be written as a function of R. Furthermore,

if p 1 is def ined as

p 11 ~~~~~~~ 
, (52)

such that is the average value of the streaming component of the

momentum and p~ represents the thermal spread about this average value,
P 11 ~;1 P.!.

4 then y can be expanded. Assuming — ‘
~‘ 0(1) and —s ‘~~ 

—
~~ ~ 0( c) one

- I e e e
finds that

,
_ 

I !

* — 
~~~~ 

P 11 Pj+P ,1 (Y  3
+ — 2 2  

+ 0(e ) (53)

1/2 ‘
~
‘t
~e
C 2ytn c

with + 
m
2
c2] 

. Using this expression for y and the expressions

found in Eqs. (33), (34) and (35) for the components of 
~~, ~~ 

can be

written as

2 ,2,—2
2— Pj~P 11 ‘~~~

-
2ym

e
—

— w~r ~~~~~~~ + pjsinct _meaB (54)
wce

— — (w e )  - 

:
~~:~~~~ 

sincJ~ — m a )  + 0(~~ )

where
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m~~~[w~r 

~: 
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‘ and ~~~~~
— “ 0(c). By choosing Nb

(R) as
wce 

— — —3 /2
Nb
(R) = n.~,(R)(2itym T) e (56)

• where —
/P w \ *— 2— b I  U c e

(R) = inc y - W
RR ~ 

- inca
O)

- ~~ ( P : ~~~’~~~~~e)
2 

m a ) ) r R  

(57)

can be written in a convenient form. To accomplish this jL,
(R) and

(R) are Taylor expanded about R=r where

_ _ _  
2R = r _

~~~~~ 
sinc~ + 0(c ) (58)

e cc
* Here again it is crucial that the gyroradius be small in comparison

to the radius of the beam. The final result is

— ~~~~ ~~b — — 3/2
—

~~~~~~~~~~~~ 
~~— sin4 J(2 lr Ym Tb

)

~1+~ ;1 ,:;;x exp — 
—

2’
~~e

Tb

where n
b
(r) is an arbitrary function of r and is obviouslZ identif led

~T~bas the particle density. Moreover , the term involving -
~~~~

-- sin4

accounts for the diamagnetic current due to the gyromotion in the

presence of a density gradient.

The fact that ~,~(r) is an arbitrary function of r is of particular

interest, since it allows one to model any experimentally determined

~fl density profile which satisfies the condition that the gyroradius is

small in comparison with the density gradient scale length. In Cartesian

coordinates an appropriate constant of the motion analogous to the guiding

* 

‘

~~ 

±-*-

~~~~~

--‘- -i
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center position , R (see Eq. (58)), is

yv
(60)

In this geometry the appropriate expansion for some function, h(E ),

would be

h(~~ ) “ h(x) + (— (61)
cc x~~~~ x

X

where again the gyroradius , iYvy /w ce I~ 
must be small in comparison

with the gradient scale length of h(
~~
).

V. VELOCITY MOMENTS OF 
~b

Using the expression (59) for the beam electron distribution

function, one can easily determine the fluid properties of the beam.

For the sake of convenience, the p 11 , p1 and • momentum space coordinates
introduced in Sec . III will be used instead of the 

~r’ ~O 
and p system .

The Jacobian for this change of variables is given by
0

p 11 / e 
___ 

p1
dP dP0dP — p1 1 + z ~~~ce 

— r 3r ) — a2m r4u 1 mr w

+ 0(c 3) dp1dp 11 d$

With this change of variables and with the components of ~ given in Eqs . —

(33) , (34) and (35) , the moments of 
~b are readily calculated . The

density, n.D, the fluid velocity, 
~b ’ the fluid momentum, 

~b’ and the

pressure tensor , Qb’ are defined as follows :
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% _ J f b
d P (63)

~~~~~~~~~~~~~~~~~~~ 
(64)

~b~b J ~ ~b d3p (65)

J ~~~~~~~ 
(~~ 

- 

~b d
3
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The density is trivially given by

and the fluid velocity and momentum are found to be

* 

“br 
= m YV

b 
— 0 + 0(e 3) (67)

— 0 2
— 

P 11 wee ~th ~
Lfl5

bP m v V  — —bO e bO z a ~rw 2 m wcc e c e
— 2 0  0 0
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P11 w 

(

3Wce 
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m r ( w )
e ce

—2 0
1 !  p ,

P — m — P + (w ° — r + 0(c 2)
* bz c b s  II a 2 cc2m r( w )e cc (69)

where ~ is defined in Eq. (53) , and p
~h E2m yTb . The reason for

calculating 
~b9 

to 0(e3) while only calculating 
~bz to 0(c 2) is clear

• where one examines the radial force balance equation , keeping in mind

that ‘
~‘ 0(c). This equation is simply

cc 
—

0 — + ~~ 
~b6 

— w8 P
b 

+ 
~Z b

1r 
(70)

Calculating the elements of the pressure tensor, results in the

following expression for 
~~~~~~ 

--- _ -~~~~~~~~~~~~~~~ -~~~~~~-~~~~~~~~~—--~~~~~~~~~~~~~
-— - - —*-- -
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=
p

tI~_~~~~
2 m y ~~~ 

*

Thus by substituting Eqs. (68), (69) and (71) into Eq. (70), one can

easily verify that the radial force balance equation is satisfied

to 0(c3).

Def ining a pitch angle, F~, for the fluid motion one has

~b0 
~ 1 ~~~~ (72)

* 

~bz P
11 cos~ (73)

where —2P ~w ‘
P E P + — r 

ce~ (74)
II II z 2 \ce2m r(w )

so that 

e cc

H ~~~~ =

~~~~~~~

H and —2 0 2  2

~(2) 
— 

P 11 ( w )  
— ~th 

~ 
(76)

m P ~1 r (w
e

) 2 m P ~1 w

To first order the fluid also flows along the field lines, as did

the electron ’s guiding center. To second order, however, the motion of

a fluid element differs from the trajectory of the guiding centers.

This difference arises from the electron’s gyromotion about the

guiding center position and from the presence of the radial density

gradient .

Considering Eqs. (75) and (76), the fluid motion of the beam has *

a simple interpretation. As mentioned above shows that the fluid

predominantly flows along the helical magnetic field lines. F~
2’, on
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• 

the other hand , describes the shear of the fluid flow away from the

field lines due to curvature drift and the diamagnetic drift. Thus

the self magnetic f ield , B:, will be paramagnetic as long as the

diamagnetic drift remains small. In order to have a diamagnetic

beam the diamagnetic drift must be at least as large as this streaming

along ~~, i.e.,

- j  6 2
- * 

w p ann.
* 

~ 
ce < th D (77)

II a ~ a ~rw 2 m wcc e e c

This usually requires that the current neutralization must be fairly

* 

complete. This will be discussed in more detail in Sec. VIII.

VI. THE BACKGROUND ELECTRON DISTRIBUTION FUNCTION

The background electron distribution function , 
~e’ is similar in

form to 
~b 

given in Eq. (51)

—g /T
— N (R)exp {— j~

- [R_w
~
P0
_ V P

~]} 
N~e 

C e (78)

Here w~ can be associated with the fluid rotation of the background

electrons and can be associated with axial counterstreaming
* 

of the background electrons. This counterstreaming is responsible

for the partial current neutralization. Since the guiding center

position of the electron is a constant of the motion N ande a

must be written as a function of R so that the return current is

restricted to the beam channel even though the background electron

- 
* density varies on a length scale much longer than r

b
.

Using the expressions found in Eqs. (44), (45) and (46) for the

components of ~, 8e becomes

g — -
~~~~ 

[v~+(v ,1 —V 11 )
2
+2rw~a8+2a5~~—V~ I + 0(c 5) (79)
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* e

where V 11 
:VC (r)+O(e 4) and 

!e 
~ 0(e

3). By choosing Ne
(R) as *

* —3/2
N (R) = 

~e (2 1TmeTe) e e (80)

H where

~e 2RwRae+2az~~~
%T

~I (81)

can be written In the following convenient form,

* 2 2
n v1+(v 1 —V (r))

* 

- 
3/2 

exp — 
2 

(82)
(2nm T )  v

2T e e  th

with Vth 
- In arriving at this result 

~e
(1
~ 

was Taylor expanded

* 
about R r  where

vi 3 
*

R — r — — — - --s in~~+ 0(c ) (83)

ce

Note that may be a weak func tion of r but is essentially constant

across the radius of the beam.

VII. VELOCITY MOMENTS OF

Using the expression for the background electron distribution

function, 
~e’ 

given by Eq. (82), the fluid properties of the background *

electrons can be investigated. Again the v 11 , v1 and 4’ velocity space

coordinates developed in Sec. III will be used in place of Vr e V 0 and

v .  The Jacobian for this change of variables is simply given by :

dv dv0dv — [v14O( e 4
fl dv1dv 11 d$ (84)

With the components of in Eqs. (44), (45) and (46) expressed in

terms of these natural coordinates, the moments of are readily

calculated. Since the background plasma is nonrelativistic, the density,

LI 
- ~~~~~~~~~~ ---~~~~
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the fluid velocity, 
~e’ 

and the pressure tensor, J~~
, are def ined

as follows:

1 35e j  f e d V  (85)

‘~eZe 
= J ~ ~e d3v (86)

= in I ~~~e~~ e”~” (87) 
*

Performing the appropriate integrations one finds

~e~~~~ e (88)

V O

w
: 

0(~~) (89)

* 

V 0 
= 

e

’

~~ 

+ 0(c 4) (90)

V — V  +0(c4) (91)
ez II

It =0+0(c~) (92)

Thus fluid motion of the background electron only involves the slow

counterstreaming along 
~
; all other fluid motions are ignorable.

The fact that V 11 is an arbitrary function of r allows the freedom to

choose the return current profile and thus determine the dependence

o f B 0 on r.

VIII. MAGNETIC FIELD EQUATIONS

The result of Sec. V and VII can now be utilized to self consistently

-; determine the magnetic field , ~~. From Maxwell’s equations, ~ is given by H

(93) 
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where is current produced by the fluid motion of the electrons.

Since the ions are stationary, Eq. (93) simply becomes

/ 2  2 ‘.

Vx - V + —
~~~~~ V (94)

~ 2 ‘~b 2 ‘~ei *

2 \c c 
/

4nn e
where w

2 

m

a is the plasma frequency of species a. Substituting
e

Eqs. (68) and (69) for and Eqs. (90) and (91) for y~, the equations

for the two components of are

z 2 — 0 2
3w w P w p

+ ce +~~~~~ 
II cc th 

_ _ _

3r 
— 

2 z —  2—z 3r
c m u  y 2m yw

ccc e cc
—2 0 2 i  0\ 2 0
P ( w )  i 3w~~~~~ w V u

+ 
II cc 

( 3  — 
r cc 

+ ~~ II cc
2— z 3 t  0 3r 1 2 z2m yr(w ) ‘ w / C U)e cc cc cc
2 — — 2 0  e~ 2w P P u  3w w

i L. (~~~ 0 
) = — .~iL + — 

I I  cc (1 — 
r ~~~~~~~ [V 

~r 3r cc 2 — 2— z 2 ~ 0 3r i 2 II
c m y  2lfleY

r(w ce) ~ 
w
ee / (96)

Using the assumptions found in Eqs. (1) and (2) along with the
P

assumption that —
~~~~ ~ 0(1) , Eq. (96) shows that
e 2 2  2

r
b
w

b 
= 

rb 
~ 0(c) (97)

c r
S

where r is skin depth of the beam. This implies that the fields can

readily penetrate into the interior of the beam. Furthermore, if

the current neutralization is considered poor, the first term on the

right hand side of both Eq. (95) and Eq. (96~ provides the dominant

contribution to the current. In this case = ~ 0( c); however, if
upe e

H the background plasma density is increased (or equivalently if the beam

density is decreased) while remains of 0( e2) for the background

electrons , then the current neutralization is improved although

it is still not necessarily complete. When this occurs the situation

is more complicated . If the current neutral izat ion is improved (e.g., 

—- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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<50% complete) by increasing n
e, 

but w6
6/ w

Z
8 is still 0(e) , then the

first and last terms on the right hand side of Eq. (95) and Eq. (96)

are important. On the other hand if the current neutralization

is nearly complete (e.g., ~9O% complete) so that w
e

/ w
~~e ~~ 0(e

2),

then the diamagnetic current in Eq. (95) also becomes important,

whereas the terms proportional to (w e
) 2 become even less important .

To illustrate more clearly some of the different types of equilibria

that can be treated consider the following three cases:
8 zCase 1) — Here the current neutralization is poor , w~~~~~~~0(e)

and “. 0(c). Keeping only the leading terms Eqs. (95) and (96) reduce to
e a 2 8

— ~pb °~ce ~b + 0(c 3) (98)2 z ac wcc

~ f 
(ru e ) - - 

Wpb ~~ + 0(C2) (99)

4 where from Eq. (55) one has P~ ine~~~
4O( C 2

) •  Since there is no

contribution from the diamagnetic current the beam will be paramagnetic.

Case ii) — In this case the current neutralization is approximately

50% complete , 
~~e’~°~ce 

‘~~ 0(c) and ‘~‘ 0(c 2). Again only keeping the

leading terms the field equations are

a 8 2 2w w Cucc 
— 

cc •_Ei?~ Vb + pa ~e + 0(c3) (100)z 2 z 2 zw c ccc

~*fr (rw~~) — — 

{
~~~~V

b +~
!v:] + 0(e 2) (101)

Here again the beam is paramagnetic. One particularly simple choice

for is just
2w b (r) bV (r) — — 

w~ 

‘V
ZPN 

(102)

where FN constant and is the fraction of current neutralization.

j__ _ _ *

~

__=_.

~

_ -- --- •~~~~~ ~~~~~~~ -~~~~-~—~~~ - ~~~~~~~~~~~ --- - - - -



‘.r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~F,— 
~

‘-- - -—— --

24 

- 

-

In general, however , FN may be function of r.

Case iii) — In this ca~~ e the current neutralization is nearly
• - ~ z 2complete , H 1w ‘O( c ) and n In ~O(r ). Here one finds that

cc cc b e
z 0 2 2 2 23w w u w pce ce ~b 4 p~~~~e E~~ 

th 
_ _ _ _  +0(~~) (103)z 2 z 2 z 2 2 — z  3r

w c c c Zm y w
* cc e cc

2 2
i 

~~~~~~~~~~~~~ 
= - 

{
~~ b ~b + _j~~ + O( c~ ) (104)

From Eq. (103) it is clear that the beam may be diamagnetic if the

current neutralization is good. Of course if the current neutralization

is very good, 
~ce

’
~
° and the beam is obviously diamagnetic.

These three cases illustrate the flexibility of this model in

treating a variety of beam—plasma equilibria. In the next Section

some specific examples will be presented for these three cases.

One other interesting case arises when the beam is neither

paramagnetic nor diamagnetic , implying that the azimuthal current is

zero. Consequently B is uniform and Eqs. (103) and (104) reduce to

0 —b ~~h 
3Lnn

b
(r)

0 = w
ce

(r)V
z
(l_F

N
) — 

2— 3r 
(105)

2my

2w (r )

~~~~ 
(rw (r)) = — 

2 ~z
(1_F’

N) (106)

where it is assumed for simplicity that ~~(r) is given by Eq. (102)

with F
N constant. It is easy to show that the other terms in Eqs. (95)

and_ (96) can be ignored for all values of FN when J0~O(c
3
~ as long

as “. 0(l’~. Using Eq. (105) to eliminate 
~~~~~ 

in Eq. (106), one

obtains an equation for %(r). Solving this equation for n.D
(r) one finds

2 2 2  (107)
(1+r /r

b
) * 

~~~~~~——- - 
—- - — -

~~ 
_ _
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which is the density profile derived from the Bennett distribution25’
26

where the beam radius must be

— 
2C P thrb —b —1/2 (108)

~pb
(O)

~
’
z
m
e1 

(l_F
N
)

If the beam radius is not equal to r
b , then dB /dr~O even though

%
(r) is given by Eq. (107). B is diamagnetic when rb

<r
b 

and

paramagnetic when r
b
>r
b .

If Ej~=0 (i.e., there is no return current), then B =const. implies

• that the azimuthal fluid velocity of the beam vanishes so that the beam

is nonrotating. Physically this means that the diamagnetic current of

the beam exactly cancels the azimuthal current of the beam associated

with the electrons streaming along the helical field lines (plus any

azimuthal particle drifts, which are generally negligible). This

- 

* 
cancellation persists across the entire profile of the beam. Fig. 1

illustrates this point by showing a typical beam electron trajectory.

- 
I In particular, the sense of rotation of the gyromotion is opposite to

that of the rotation due to the streaming along the helical field lines.

If %(r) is given by Eq. (107) but FN
=const.#O , it is still possible

to have a nonrotating beam, however the rotation of return current

produces a residual diamagnetism. In this case the radius of the non—

rotating beam is found to be

r
b —b 1/2 1/2 (109)

w
pb

(O)V
z
m
eY 

(l_F
N)

Note that when F
N O , rb

_r
b. Finally if F

N 
is chosen as a function of

r, equilibria can be found with B =constant, however , %
(r) will not

correspond to the Bennett profile and in general the beam will rotate.

- ~~~~~ - - -~~~~ - --~~~~~~~~~~~~~~~~~~~~~~~~ 
- 
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From this discussion, it is clear that a nonrotating beam is a

rather special case and that beams generally do rotate.  Of course ,

the physical consequences of this rotation in a stability analysis

will depend on the magnitude of the rotation frequency compared to

the time scale of interest.

IX. EXANPLES OF TYPICAL BEAN—PLASMA EQUILIBRIA

Two density profiles that will be considered are the Bennett

profile and the Gaussian profile. The Bennett profile, however, is

more diffuse than the Gaussian profile (Fig. 2). This implies that

the steeper gradients at the edge of the Gaussian profile will produce

larger diamagnetic currents. This will have important consequences

for the beam rotation frequency.

If Eq. (102) is used for V~(r) where for simplicity FN
=const.,

then Eqs. (99), (101) and (104) are mathematically equivalent and are

easily integrated :

2
l c r w b(r) b

= — 

~ J ~ 2 V —F)r’dr ’ (110)
0 c

where F
N O for case i, FN~

.S for case ii and F
N~
.9 for case iii of

Sec. VIII. For the Bennett profile, Eq. (107), this can be integrated

t.o give

2 —bw ,~(0)V (1—F )pu z N r
~~~

(r) = — 

2c
2 (l+r2/r~) 

(ill)

For the Gaussian profile %
(r) is expressed as

%
(r) = n~ (O)exp(_r

2
/r~ } (112)

and the solution of Eq. (110) for this case is just 

~~—--—--- — -~~~~~~~~~~~ - - - . A~
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2 —b 2 2 2

0 
w 
b~
0
~’’~ (l~FM) r~jl—exp {—r /rk })

w (r)=— ~ 
Z U (113)

cc 2C2 r

Note that in both cases 
~~~~~ 

increases linearly with r near the

center of the beam (r<<r
b
), and falls off like r 1 

outside the beam *

(r>>r b ) .  w° is plotted as a function of r in Fig. 3, where for

comparison the density on axis, nb
(O) , and the beam~~dius, rb, are set

equal for the two different profiles. Although the total current

is the same for both profiles, the peak value of B0 is ~25% higher

for the Gaussian profile than for the Bennett profile simply because

the Bennett profile is more diffuse. By choosing FN appropriately ,

the curves will correspond to any one of three cases discussed

in Sec. VIII. With certain values for the parameters this model can

properly describe self fL ds as large as “10% of the applied field

for a Gaussian profile (Fig. 4). B0 could become even larger f or a

density profile with a sharper boundary than the Gaussian profile.

Turning to the case where J~~O, it is interesting to examine

how the axial self magnetic field, BS, and the beam rotation frequency,

are modified by varying r
b. Here the beam rotation frequency , WR,

is def ined as

V0
(r)

wR 
= 

r 
(114)

If r =~~ then BS will vanish for all r, and if r 4 then w willb b  z b b  R

vanish for all r. B (r) and w
R(r) are plotted in Figs. (5) and (6)

for four diff erent values of r
b 
where the beam density follows a

Bennett profile . Observe that the diamagnetic beams are thinner and

generally rotate faster near the axis than the paramagnetic beams.

Although FN O. S , the diamagnetic beams considered here differ from

the paramagnetic beams of case ii in Sec. VIII because the beam

_ _ _  - - -  - - -r n~~~~~~L - -— -
~~~~

-
~~~

-
~~~
- - ---- . -- - - - -- -- -

~~~~~~~
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~~~~ 
- 

~~~~~~~
— 
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radius is smaller. Figs. (7) and (8) display the corresponding curves

for BS(r) and wR(r) when n.,,(r) follows a Gaussian profile. Note

* 

that w.~(r) depends critically on the shape of the density profile while

BS only has a weak dependence on %
(r). In particular , the beam

rotates in the same direction across the entire profile of the beam

* for the Bennett case for any rb , whereas the beam can change its

direction of rotation at the outer edge of the beam for certain values

of r
b 
when the density profile is Gaussian. Although the behavior of

B:(r) about r
b
=
~b 

is interesting its magnitude is small compared to

the applied field since it was assumed that w
0 

/w
Z <0(e) and —

~~~~~ < 0(e).
cc ce*~ m c ” '

Larger values of p /m c or ~
O 

1
~~ Z 

will of course make these effectsth e cc cc

more important.

If the current neutralization is better in the interior of the

beam than at the edge of the beam, then a larger portion of the net

current flows on the surface of the beam. This situation can arise

*
* when r u /c>l and the return current has not yet diffused out of

b p e

the beam channel.
27 ’28 

This situation is easily modeled by allowing

F
N to be a function of r. One convenient choice is

F
N
(r) = FN b (r ) /n.b (O)

Figs. (9) and (10) show the effect that this has on B
0(r) for the

Bennett profile and the Gaussian profile respectively for different

values of FN. When FN 1, B0 still reaches an appreciable peak value

since the current is only completely neutralized at the center of the

beam . Furthermore with the current flowing nearer to the edge of the

beam, B0 peaks further from the center of the beam than if FN (r)

were constant.

_ _ _ _  —--- -~~~ --



29

Although the choice of FN
(r) given in Eq. (115) is instructive,

any reasonable function of r can be used for FN(r) in order to fit

any appropriate profile for B0(r). Thus both 
%

(r) and B0(r) can be

chosen independently. This fact makes this Vlasov treatment a very

powerful method for modeling beam—plasma systems.

X. CONCLUSIONS

The Vlasov equilibrium model that has been developed in this

paper can describe a very broad class of warm beam—plasma systems in

— 

an applied field, B°; but the entire treatment depends crucially on
* the smallness of the electron gyroradius compared to the beam radius.

This condition , however, is easily satisfied in typical systems where

E0
~ l kg and rb~

l cm. Assuming that this condition on the gyroradius

is satisfied, the procedure outlined in this paper can be used to model

any charge neutralized beam—plasma system with reasonable density

and azimuthal self magnetic field profiles. The density profile and

azimuthal field profile can be chosen independently since the theta

component of the ~~~~ equation can be satisfied by adj usting the fractional

current neutralizational factor, F
N

(r) . In other words the (~~x~~) 0

equation can be used to determine F
N
(r) given the functional

dependence of n.D and B0 on r. Of course , if FN (r) is known , then

* the equation can be used to f ind  B0 (r) .

By making the simple choice of FN (r)=const. and using the

equation to solve for B0 (r) and B (r) , it was possible to investigate

the dependence of the beam rotation frequency. WR
(r) , and the axial

self magnetic field, B (r) , on the density prof ile of the beam,

and the fraction of current neutralization , FN . When F
N
)O.S it was

L ~~~~~~~~~~
-— -

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
- —

~~~~~~~~
- —-  — —  -

~~~
~-
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found that B~ can be diamagnetic for a sufficiently warm beam but when

F
N
<0.5,B

S was paramagnetic. In general diamagnetic beams were also

found to be thinner than paramagnetic beams because of the increased

pinching force when J0
<O. It was discovered that cu

R depends strongly

on the shape of the density profile and that the Bennett profile with

radius 
~b 

(Eq. 109) corresponds to the case of a nonrotating beam , i.e.,

for all r. However, this nonrotating beam is only one special

case of the general type of beam—plasma systems described by this

equilibrium model.

Because of the flexibility in the choice of 
%(r) and B0

(r)

mentioned above, this equilibrium model will be very valuable for

studying the effects of self magnetic fields and radial inhomogeneities

on the stability of beam plasma system. Since the model also allows

for a thermal spread in momentum, thermal effects on the stability of

such systems can also be studied. Furthermore, as mentioned in

Sec. III, the beam electron orbits found in Eqs. (41), (42) and (43)

and background electron orbits found in Eqs. (47), (48) and (49)

can be utilized in calculating the perturbed distribution functions

for a stability analysis using the method of characteristics. This

analysis will be the subject of a fu ture  paper.
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FIGURE CAPTIONS

Fig. 1 Trajectory of a typical beam electron. The beam electron

gyrates about in the opposite sense that it rotates about

the z—axis while streaming along ~~.

Fig. 2 Beam density, n.D
(r), as a function of the radial position, r.

* Both Bennett and Gaussian profiles are shown, with w b
(O)

and rb 
identical for both cases.

Fig. 3 Azimuthal self—magnetic field , B0
(r) ,  as a function of the

* 
radial position, r. Here the fractional current neutralization,

F
N, 

is a constant (O<FN
<l). Examples of the three cases

* 
discussed in Sec. VIII are obtained when F

N
<O.l (case i),

(case ii) and F
N~
O.9 (case iii). The parameters of

the system are identical for both the Bennett case and the

— 

Gaussian case: r
b

l cm, wpe=9.9x10
l°rad/se c; w e

(w) 3.OxlO
10
rad/sec;

%
(0)/n~(O)_0.Ol; y2; pth/me~~0.1.

Fig. 4 Example of a case where the azimuthal self magnetic field

is greater than 10% of the applied field . Here a Gaussian

density profile is used and rb=2.O cm; cu e
6.75xl0

10
rad/sec;

w
~e

(0o)_3.0xl0’°rad/sec; FN~’O; %(0)/n (0)=0.04; y=2.0;
pth /me~~

O
~~~

Fig. 5 Axial self—magnetic field , B
5(r) , as a function of radial

position , r , for a Bennett density profile with various

values of the beam radius, rb
. Note B

5(r)”O for r
b
=rb=l.O cm.

The other parameters of the system are the same as in Fig. 3

with FN
O.S.
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Fig. 6 Beam rotation frequency, w
R
(r) , as a function of radial position,

r, for a Bennett density profile with various values of

the beam radius, rb. Note w.~(r)=O for rb
.
~
r
b
=O.7 cm.

The other parameters of the system are the same as in Fig. 3

with FN=O.S.

Fig. 7 Axial self—magnetic field, B ( r), as a function of radial

position, R, for the case of a Gaussian density profile for

various values of the beam radius r
b
. Here B6(r) is nonzero

for all rb . The other parameters of the system are the same

as in Fig. 3 with F
N
O.S.

Fig. 8 Beast rotation frequency, cuR
(r) , as a function of radial

position, r, for a Gaussian density profile with various values

of the beam radius, ~~ Note: there is no nonrotating case

for any RD . The other parameters of the system are the same

as in Fig. 3 with FN O.5.

Fig. 9 Azimuthal self magnetic field, B (r) , as a function of radial

position, R, for a Bennett density profile. Here

~~
n.I, (r) /nb (0) for

~~N =0.0 , 0.5 and 1.0. The other parameters

of the system are the same as in Fig. 4.

Fig. 10 Azimuthal self magnetic field, B (r) , as a function of

radial position, R, for a Gaussian density profile. Here

FNnb
(r) /%(O) for 

~~~~~~ 
0.5 and 1.0. The other parameters

of the system are the same as in Fig. 4.
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